

企业版特性概览

产品版本: ZStack 3.9.0

版权声明

版权所有[©]上海云轴信息科技有限公司 2020。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标说明

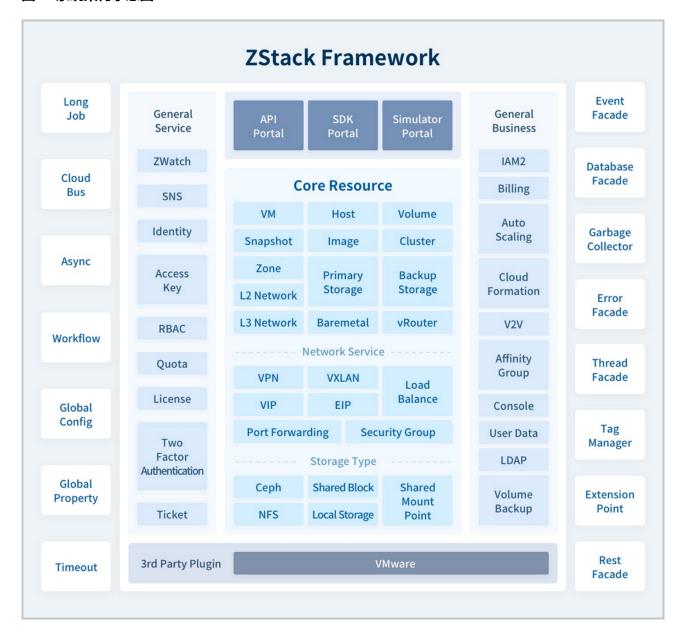
ZStack商标和其他上海云轴商标均为上海云轴信息科技有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受上海云轴公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,上海云轴公司对本文档内容不做任何明示或暗示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。


目录

版	又声明	I
1 7	^产 品概述	. 1
•		
	2.1 云平台核心资源支持可视化容量展示	
	2.2 支持SR-IOV网卡	
	2.3 灾备服务增强	6
	2.4 扁平网络(经典网络)场景支持负载均衡	8
	2.5 负载均衡增强	9
	2.6 VPC路由器增强	12
	2.7 公有网络新增地址池网段类型	
	2.8 弹性伸缩增强:新增云主机内部监控触发弹性伸缩	16
	2.9 V2V迁移增强	
	2.10 企业管理增强	
	2.11 云主机网卡性能优化	
	2.12 云主机可以设置不同型号的网卡	
	2.13 云主机通过白名单的方式支持任意VT-D设备的透传	
	2.14 镜像使用优化	
	2.15 物理机/云主机列表展示优化	
	2.16 SharedBlock主存储增强	
	2.17 双管理节点授权优化	
	2.18 Libvirt升级至4.9	
	2.19 其它功能和优化	31
术i	吾表	2

1产品概述

ZStack是下一代开源的云计算IaaS(基础架构即服务)软件。它主要面向未来的智能数据中心,通过提供灵活完善的APIs来管理包括计算、存储和网络在内的数据中心资源。用户可以利用ZStack快速构建自己的智能云数据中心,也可以在稳定的ZStack之上搭建灵活的云应用场景,例如VDI(虚拟桌面基础架构)、PaaS(平台即服务)、SaaS(软件即服务)等。

图 1: 系统架构示意图

2 ZStack企业版 3.9.0 新增功能

- 1. 云平台核心资源支持可视化容量展示
- 2. 支持SR-IOV网卡
- 3. 灾备服务增强
 - 备份任务新增概览视图
 - 支持对备份任务创建事件报警器,备份任务执行失败触发报警
- 4. 扁平网络(经典网络)场景支持负载均衡
- 5. 负载均衡增强
 - 监听器支持配置黑白名单,控制特定IP访问负载均衡
 - 负载均衡新增支持加权轮询算法
 - 负载均衡新增支持HTTP健康检查协议
- 6. VPC路由器增强
 - VPC路由器支持指定默认路由
 - VPC路由器配置多公网支持源进源出
- 7. 公有网络新增地址池网段类型
- 8. 弹性伸缩增强:新增云主机内部监控触发弹性伸缩
- 9. V2V迁移增强
 - 迁移服务器新增总容量以及可用容量展示
 - 迁移服务器支持实时容量监控
 - 迁移服务器支持设置单独的迁移网络
 - 迁移服务器与所征用物理机状态解耦
 - V2V迁移任务优化创建流程以及迁移进度展示

10.企业管理增强

- 支持设置UI默认登录界面
- UI批量创建项目
- 权限服务展示优化
- 11.云主机网卡性能优化
- 12.云主机可以设置不同类型的网卡
- 13.云主机通过白名单的方式支持任意VT-D设备的透传
- 14.镜像使用优化
 - 支持云盘镜像创建共享云盘
 - 导出镜像提供MD5校验值
- 15.物理机/云主机列表展示优化
 - 云主机列表新增过滤条件: "启用状态"
 - 物理机列表新增过滤条件: "启用状态"和"就绪状态"
 - 物理机支持定制化标签功能

16.SharedBlock主存储增强

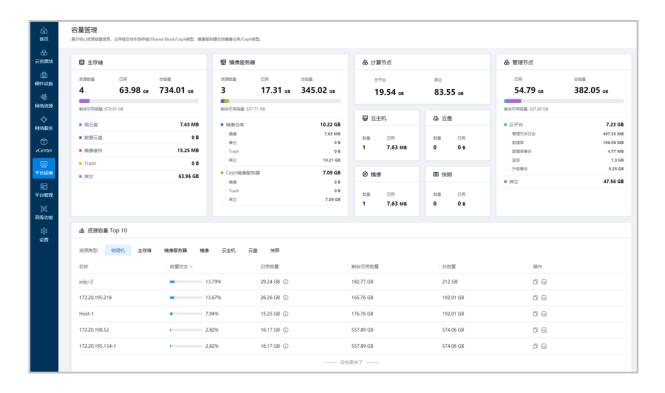
- NeverStop云主机缩短高可用恢复延时
- 优化云主机启动

17.双管理节点授权优化

• 支持一次性上传双管理节点的授权

• 关于界面直观展示双管理节点状态和授权信息

18.Libvirt升级至4.9


19.其它功能和优化

- 新增多个操作场景操作助手和帮助文档
- 优化界面交互
- 优化部分业务逻辑

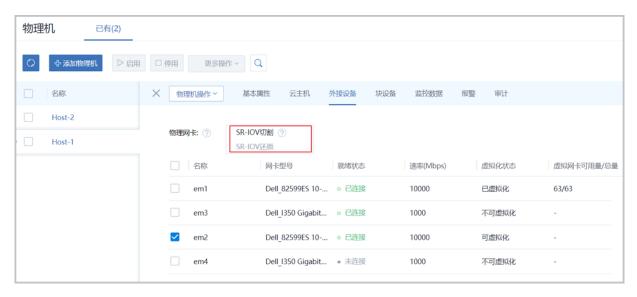
2.1 云平台核心资源支持可视化容量展示

ZStack 3.9.0新增容量管理界面,支持对云平台核心资源容量信息进行直观展示,包括:以卡片形式展示各种核心资源详细容量信息,以及对各种核心资源容量信息进行TOP 10排序,方便用户整体掌控当前云平台核心资源容量使用情况,提高管理运维效率,如图 2: 容量管理界面所示:

图 2: 容量管理界面

2.2 支持SR-IOV网卡

ZStack 3.9.0支持基于SR-IOV规范,将一张物理网卡虚拟化切割成多张VF类型网卡,直接分配给云主机使用。实现更灵活弹性的资源使用、提高资源利用率、以及节约成本。


相比传统的vNIC虚拟化网卡,VF网卡具有以下功能优势:

• VF网卡可直接分配给云主机,越过虚拟化层,缩短数据传输路径,使云主机获得接近物理设备的I/O性能;

• 明显减少对物理机CPU资源的消耗,即使物理机CPU压力较大,也能有效减少网络丢包,提高 传输效率。

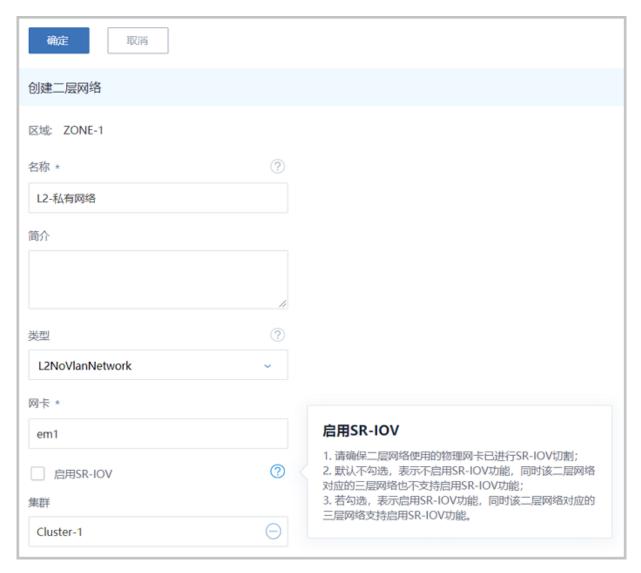

如图 3: 物理网卡支持SR-IOV切割/还原所示:

图 3: 物理网卡支持SR-IOV切割/还原

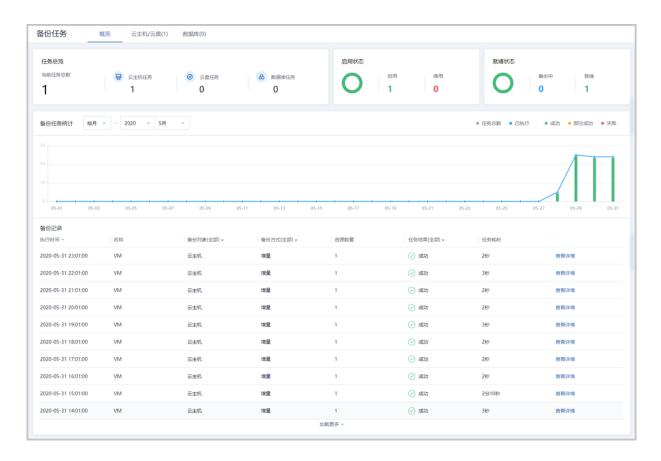
创建L2NoVlanNetwork、L2VlanNetwork类型的二层网络时,可选择是否启用SR-IOV。若启用,该二层网络下的所有三层网络将支持启用SR-IOV,如图 4: 创建二层网络启用SR-IOV所示:

图 4: 创建二层网络启用SR-IOV

创建云主机时,若对所选三层网络启用SR-IOV,则该云主机成功创建后将加载VF网卡,如图 5: 创建云主机加载VF网卡所示:

图 5: 创建云主机加载VF网卡

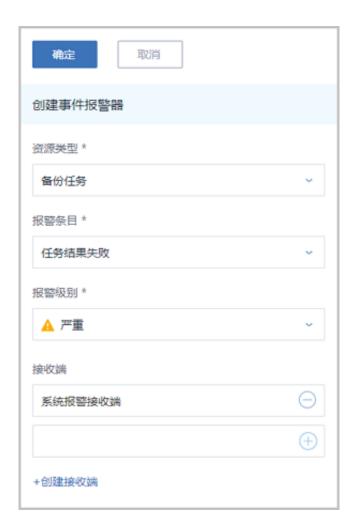
2.3 灾备服务增强


ZStack 3.9.0对灾备服务进行以下增强:

备份任务新增概览视图

在ZStack 3.9.0中,备份任务新增概览视图,支持对当前备份任务进行统一直观展示,方便用户快速掌控当前备份任务整体情况,提高管理运维效率。

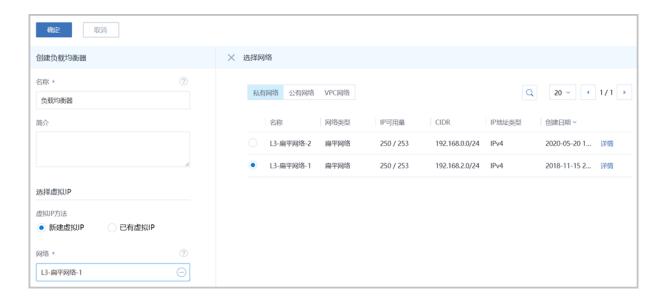
备份任务包括:以卡片形式展示备份任务的总数量、云主机/云盘/数据库各自备份任务的数量以及备份任务的启用状态/就绪状态统计;以可视化图表形式展示备份任务的执行状态统计,并支持按年/月/日自定义时间段查看该图表;以列表形式展示所选时间段内全部备份任务清单,并支持查看每条备份记录的详情,如图 6:备份任务概览页所示:


图 6: 备份任务概览页

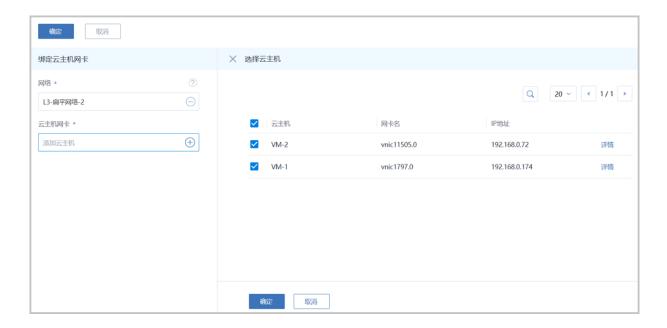
支持对备份任务创建事件报警器,备份任务执行失败触发报警

ZStack 3.9.0支持对备份任务创建事件报警器,当备份任务执行失败,用户会在接收端(邮箱/钉钉/HTTP应用/短信)接收到备份任务执行失败的报警详情,如图 7:备份任务失败报警所示:

图 7: 备份任务失败报警



2.4 扁平网络(经典网络)场景支持负载均衡


传统云计算的负载均衡,是通过一个公网IP地址作为虚拟IP,将网络请求分发给私有网络内不同的云主机,以提高网络服务并发度并保证服务高可用。在私有云环境中,用户的高可用服务业务可能仅提供给私有网络内部使用(例如数据库、缓存),并不需要公网地址来中转。在没有内网负载均衡功能前,用户只能通过申请虚拟IP方式手动在多台私有网络云主机上搭建Keepalived或HAProxy环境。

ZStack 3.9.0之前版本已支持传统公网负载均衡、以及VPC私有网络内网负载均衡功能。从ZStack 3.9.0开始,新增支持扁平网络(经典网络)内网负载均衡功能。用户可直接在UI界面创建内网负载均衡服务,ZStack会完成所有相关配置,使用方法和传统公网负载均衡一样,如图 8: 使用扁平网络类型虚拟/P创建负载均衡器、图 9: 监听器绑定云主机网卡所示:

图 8: 使用扁平网络类型虚拟IP创建负载均衡器

图 9: 监听器绑定云主机网卡

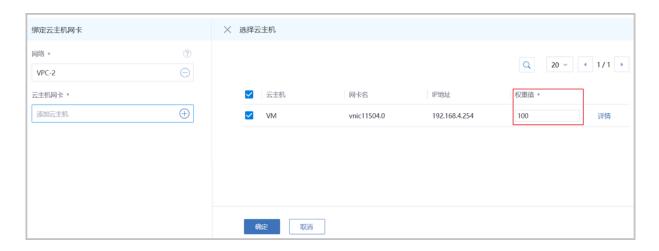
2.5 负载均衡增强

ZStack 3.9.0对负载均衡进行以下增强:

监听器支持配置黑白名单,控制特定IP访问负载均衡

ZStack 3.9.0支持通过zstack-cli命令为监听器配置黑白名单,控制特定IP访问负载均衡,防止恶意攻击,提高系统安全性。

负载均衡新增支持加权轮询算法


在ZStack 3.9.0中,负载均衡新增支持加权轮询算法。在原有轮询算法基础上新增权重算法,外部请求经过权重轮询分配到负载均衡规则指定的云主机中,权重值越高的云主机,被轮询到的次数(概率)越高。用户可根据业务需求以及云主机性能差异,给云主机设置不同的权重值,实现最佳负载均衡状态。

创建监听器时负载均衡算法支持选择"加权轮询",监听器绑定云主机网卡时支持设置权重值,如图 10: 负载均衡算法-加权轮询、图 11: 设置权重值所示:

图 10: 负载均衡算法-加权轮询

确定 取消
创建监听器
健康检查端口 *
default
非健康监控阈值 *
2
健康检查间隔时间 *
5
最大连接数量 *
5000
负载均衡算法
轮询
最小连接 源地址哈希
加权轮询

图 11: 设置权重值

负载均衡新增支持HTTP健康检查协议

在ZStack 3.9.0中,负载均衡新增支持HTTP健康检查协议。创建监听器时健康检查协议支持选择"HTTP",需相应配置正常状态返回码、健康检查URI、HTTP健康检查方法等参数,如图 *12:* 负载均衡支持*HTTP*健康检查协议所示:

图 12: 负载均衡支持HTTP健康检查协议

2.6 VPC路由器增强

ZStack 3.9.0对VPC路由器进行以下增强:

VPC路由器支持指定默认路由

ZStack之前版本,VPC路由器已支持加载多个公有网络,但首次加载的公有网络固定为默认路由,不允许修改。

从ZStack 3.9.0开始,VPC路由器支持指定默认路由。用户可选择VPC路由器上已加载的任一公有网络作为默认路由,修改后立即生效,无需重启VPC路由器,如图 13: 设置默认路由所示:

图 13: 设置默认路由

VPC路由器配置多公网支持源进源出

ZStack之前版本,VPC路由器已支持加载多个公有网络,但所有内部响应通过默认路由返回,无法保证数据进出一致。

从ZStack 3.9.0开始,VPC路由器上配置的所有非默认公有网络支持源进源出。VPC路由器配置多公网时,每个公网所触发的外部请求对应的内部相应将原路返回,从而确保数据进出一致,提升网络传输效率。用户可在VPC路由器详情页开启此功能,修改后立即生效,无需重启VPC路由器。如图 14: VPC路由器支持源进源出所示:

图 14: VPC路由器支持源进源出

2.7 公有网络新增地址池网段类型

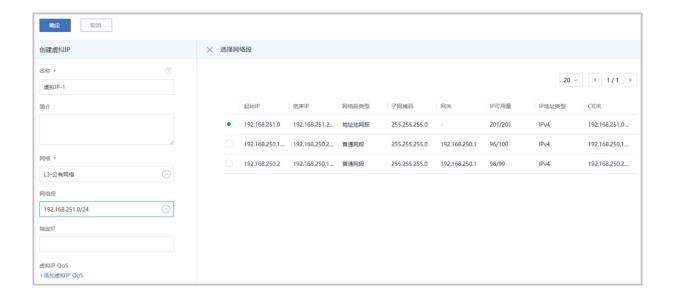

在ZStack 3.9.0中,对于已创建的IPv4类型公有网络,在普通网段基础上,新增支持添加地址池网段类型。一个公有网络支持添加多个地址池网段,但地址池网段需依附普通网段,缺少普通网段时不允许添加地址池网段,如图 15:添加地址池网段所示:

图 15: 添加地址池网段

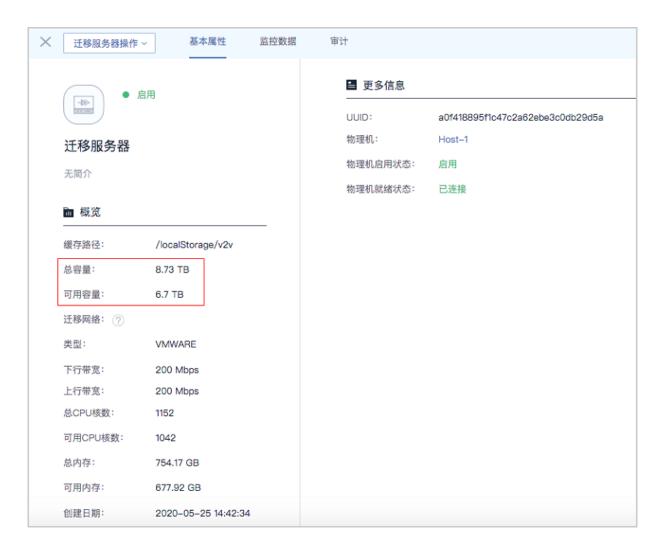
地址池网段中的所有IP地址仅可用于创建虚拟IP,提供各种网络服务,如图 16:使用地址池网段创建虚拟IP所示:

图 16: 使用地址池网段创建虚拟IP

2.8 弹性伸缩增强:新增云主机内部监控触发弹性伸缩

在ZStack 3.9.0中,弹性伸缩组新增云主机内部监控触发弹性扩容、弹性缩容。新增的云主机内部监控条目包括:云主机CPU平均使用率(需安装agent)、云主机内存平均使用率(需安装agent),使用内部监控需预先安装agent,如图 17: 云主机内部监控触发弹性伸缩所示:

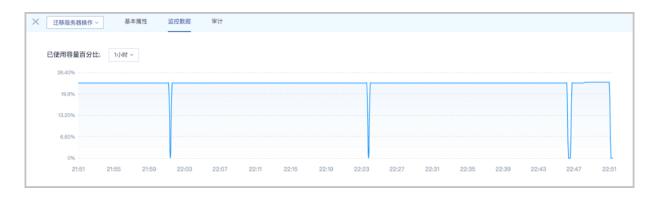
图 17: 云主机内部监控触发弹性伸缩


2.9 V2V迁移增强

ZStack 3.9.0对V2V迁移进行以下增强:

迁移服务器新增总容量以及可用容量展示

在ZStack 3.9.0中,迁移服务器详情页新增总容量以及可用容量展示。其中,总容量表示迁移服务器上缓存路径所在磁盘的总容量,可用容量表示缓存路径所在磁盘的可用容量 - 正在执行中的V2V迁移任务占用容量(相关源云主机根云盘和数据云盘容量总和),如图 18: 迁移服务器容量展示所示:


图 18: 迁移服务器容量展示

迁移服务器支持实时容量监控

在ZStack 3.9.0中,迁移服务器详情页新增实时容量监控,支持选择不同的时间跨度来监控迁移服务器已使用容量百分比,如图 19: 迁移服务器容量监控所示:

图 19: 迁移服务器容量监控

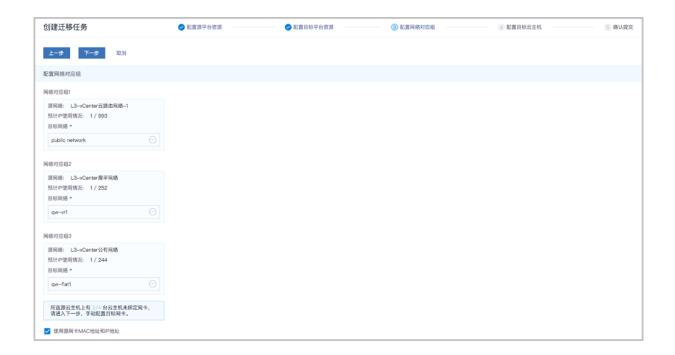
迁移服务器支持设置单独的迁移网络

在ZStack 3.9.0中,迁移服务器支持设置单独的迁移网络,从源主存储迁移至迁移服务器的数据转化,使用该迁移网络,如果不设置,V2V迁移将默认使用管理网络,如图 20: 设置迁移网络所示:

图 20: 设置迁移网络

迁移服务器与所征用物理机状态解耦

在ZStack 3.9.0中,迁移服务器与所征用物理机状态解耦。当迁移服务器为启用状态,所征用物理机为停用状态,此时该迁移服务器将作为V2V迁移场景专用,其它业务云主机不会被调度至该迁移服务器上,影响迁移效率,如图 21: 迁移服务器 V2V专用所示:


图 21: 迁移服务器V2V专用

V2V迁移任务优化创建流程以及迁移进度展示

ZStack 3.9.0对VMWare V2V以及KVM V2V场景的迁移任务创建流程均进行交互优化,进一步便 捷操作,提升用户体验。此外,迁移任务进度条支持实时进度展示,如图 22: 迁移任务创建流程优 化、图 23: 迁移任务进度展示所示:

图 22: 迁移任务创建流程优化

图 23: 迁移任务进度展示

2.10 企业管理增强

ZStack 3.9.0对企业管理进行以下增强:

支持设置UI默认登录界面

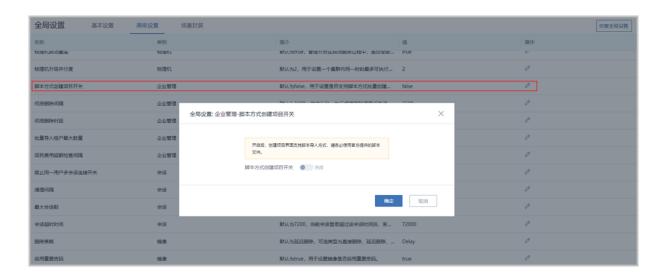
ZStack 3.9.0新增全局设置 "UI登录界面模式" ,用于限制默认登录链接http(s)://management_node_ip:port访问的登录界面。若设置为 "显示所有" ,默认登录链接将支持访问主登录界面、以及项目登录界面;若设置为 "项目登录" ,默认登录链接将仅能访问项目登录界面,此时主登录界面将提供独立登录链接,如图 24: 设置UI界面登录模式所示:

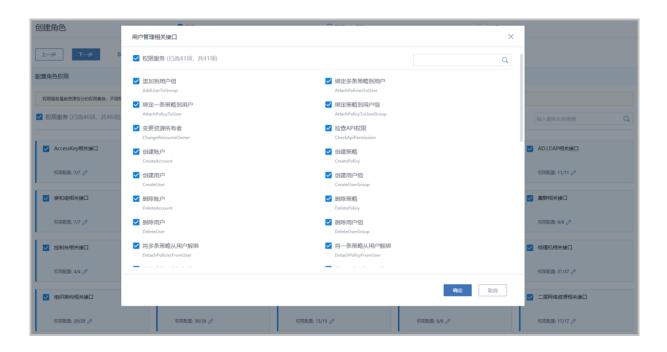
图 24: 设置UI界面登录模式

UI批量创建项目

ZStack 3.9.0支持UI批量创建项目,在全局设置开启"脚本方式创建项目开关",即可在创建项目 界面使用官方提供的脚本批量创建项目,如图 25: 脚本方式创建项目开关、图 26: 批量创建项目所示:

图 25: 脚本方式创建项目开关

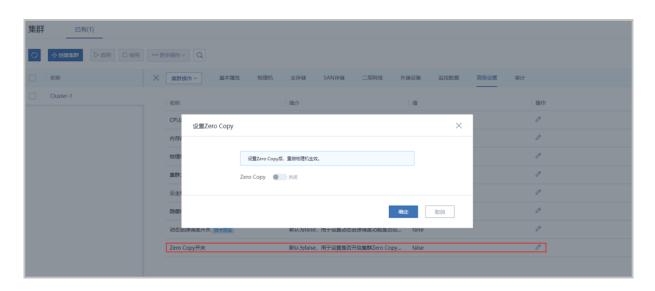



图 26: 批量创建项目

权限服务展示优化

ZStack 3.9.0对权限服务进行展示优化。在配置角色权限时,对API粒度的权限条目补充释义,帮助用户更精准理解权限内容,便捷配置角色权限,如图 27: 权限服务展示优化所示:

图 27: 权限服务展示优化


2.11 云主机网卡性能优化

ZStack 3.9.0对云主机网卡性能进行以下优化:

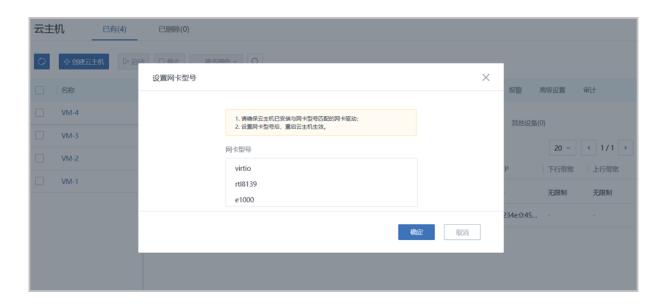
集群新增支持 "Zero Copy" 的高级设置

在ZStack 3.9.0中,集群新增"Zero Copy"高级设置。开启后集群内所有物理机支持Zero Copy功能,可减少数据在内核态和用户态之间的拷贝次数,降低CPU占用时间,有效提升云主机Virtio网卡的性能。设置"Zero Copy"后,需重启物理机生效,如图 28: Zero Copy开关所示:

图 28: Zero Copy开关

云主机新增支持"网卡多队列数目"高级设置

在ZStack 3.9.0中,云主机新增"网卡多队列数目"高级设置。Virtio类型网卡的流量分配给多个CPU时,用户可自行设置队列数目,有效提升虚拟网卡性能。设置"网卡多队列数目"后,需重启云主机生效,如图 29: 设置网卡多队列数目所示:


图 29: 设置网卡多队列数目

2.12 云主机可以设置不同型号的网卡

在ZStack 3.9.0中,平台类型为Linux、Paravirtualization的云主机支持设置网卡型号(包括:Virtio、E1000、RTL8139)。在云主机详情页-配置信息-网卡的子页面,展开更多操作,点击"设置网卡型号",即可在"设置网卡型号"弹窗中修改。设置网卡型号后,需重启云主机生效,如图30:设置网卡型号所示:

图 30: 设置网卡型号

2.13 云主机通过白名单的方式支持任意VT-D设备的透传

在ZStack 3.9.0 中,云主机通过白名单的方式支持任意VT-D设备的透传,例如:Ali-NPU卡、IB卡(PCI模式)、FPGA卡等。用户需自行编辑白名单,将需要透传的设备添加至白名单,白名单编辑完成后,需重连物理机生效。

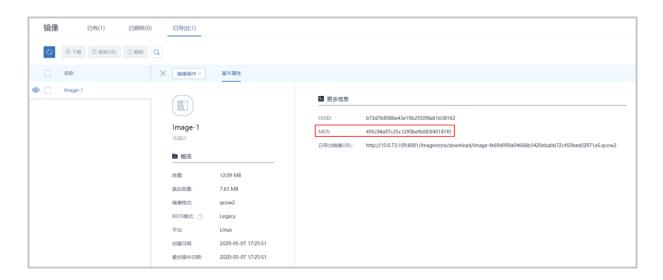
2.14 镜像使用优化

ZStack 3.9.0对镜像进行以下优化:

支持云盘镜像创建共享云盘

ZStack 3.9.0支持使用云盘镜像创建共享云盘,包括:基于Ceph主存储的共享云盘、基于厚置备的Shared Block主存储的共享云盘,如图 31: 云盘镜像创建共享云盘所示:

图 31: 云盘镜像创建共享云盘



导出镜像提供MD5校验值

在ZStack 3.9.0中,已导出镜像支持提供MD5校验值。用户可在已导出镜像详情页查看该镜像的MD5校验值,校验下载镜像的完整性。

若通过API方式执行镜像相关操作,由于exportMd5Sum和exportUrl两个字段的存放位置已挪动,需注意相关API返回字段的位置变化,如图 32: 已导出镜像提供MD5校验值所示:

图 32: 已导出镜像提供MD5校验值

2.15 物理机/云主机列表展示优化

ZStack 3.9.0对物理机/云主机列表展示进行以下优化:

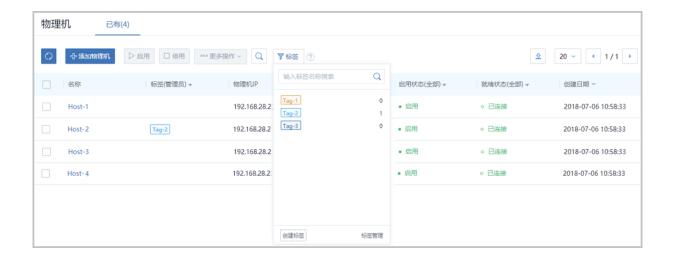
云主机列表新增过滤条件: "启用状态"

在ZStack 3.9.0中,云主机列表新增按"启用状态"过滤符合条件的云主机。 "启用状态"包括:全部、运行中、已停止、已暂停、未知,如图 33: 云主机列表新增过滤条件所示:

图 33: 云主机列表新增过滤条件

物理机列表新增过滤条件:"启用状态"和"就绪状态"

在ZStack 3.9.0中,物理机列表新增按"启用状态"或"就绪状态"过滤符合条件的云主机。"启用状态"包括:全部、启用、停用、预维护模式、维护模式;"就绪状态"包括:全部、已连接、已失联,如图 34:物理机列表新增过滤条件所示:


图 34: 物理机列表新增过滤条件

物理机支持定制化标签功能

在ZStack之前版本中,已支持对云主机/云盘资源定制化创建标签(包括:管理员标签、租户标签),可通过标签类型及标签名称快速检索所需资源。从ZStack 3.9.0开始,新增支持对物理机资源定制化创建标签(仅支持管理员标签),并通过标签快速检索物理机,如图 35: 物理机定制化标签所示:

图 35: 物理机定制化标签

2.16 SharedBlock主存储增强

ZStack 3.9.0对SharedBlock主存储进行以下增强:

- NeverStop云主机缩短高可用恢复延时
- 优化云主机启动

2.17 双管理节点授权优化

ZStack 3.9.0对双管理节点授权进行以下优化:

支持一次性上传双管理节点的授权信息

在ZStack 3.9.0中,只需在任一管理节点进行一次性的请求码下载(该请求码包含双管理节点请求码信息)、以及一次性的许可证上传,即可完成双管理节点的授权信息更新。

关于界面直观展示双管理节点状态和授权信息

在ZStack 3.9.0中,关于页面支持直观展示双管理节点状态和授权信息。若出现双管理节点授权信息不一致、网络不通等情况,关于界面将及时出现相应文字提醒,帮助用户快速定位问题,如图 36: 双管理节点状态及授权信息展示所示:

图 36: 双管理节点状态及授权信息展示

2.18 Libvirt升级至4.9

ZStack 3.9.0默认将Libvirt升级至4.9版本,修复了因旧版本Libvirt引起的故障问题,提高产品稳定性。

2.19 其它功能和优化

- 新增多个操作场景进度条、操作助手和帮助文档
- 优化界面交互
- 优化部分业务逻辑

术语表

区域 (Zone)

ZStack中最大的一个资源定义,包括集群、二层网络、主存储等资源。

集群(Cluster)

一个集群是类似物理主机(Host)组成的逻辑组。在同一个集群中的物理主机必须安装相同的操作系统(虚拟机管理程序,Hypervisor),拥有相同的二层网络连接,可以访问相同的主存储。在实际的数据中心,一个集群通常对应一个机架(Rack)。

管理节点(Management Node)

安装系统的物理主机,提供UI管理、云平台部署功能。

计算节点 (Compute Node)

也称之为物理主机(或物理机),为云主机实例提供计算、网络、存储等资源的物理主机。

主存储(Primary Storage)

用于存储云主机磁盘文件的存储服务器。支持本地存储、NFS、 Ceph、Shared Mount Point、Shared Block类型。

镜像服务器(Backup Storage)

也称之为备份存储服务器,主要用于保存镜像模板文件。建议单独部署镜像服务器。支持ImageStore、Sftp(社区版)、Ceph类型。

镜像仓库(Image Store)

镜像服务器的一种类型,可以为正在运行的云主机快速创建镜像,高效管理云主机镜像的版本变迁以及发布,实现快速上传、下载镜像,镜像快照,以及导出镜像的操作。

云主机(VM Instance)

运行在物理机上的虚拟机实例,具有独立的IP地址,可以访问公共网络,运行应用服务。

镜像(Image)

云主机或云盘使用的镜像模板文件,镜像模板包括系统云盘镜像和数据云盘镜像。

云盘 (Volume)

云主机的数据盘,给云主机提供额外的存储空间,共享云盘可挂载到一个或多个云主机共同使用。

计算规格 (Instance Offering)

启动云主机涉及到的CPU数量、内存、网络设置等规格定义。

云盘规格(Disk Offering)

创建云盘容量大小的规格定义。

二层网络(L2 Network)

二层网络对应于一个二层广播域,进行二层相关的隔离。一般用物理网络的设备名称标识。

三层网络(L3 Network)

云主机使用的网络配置,包括IP地址范围、网关、DNS等。

公有网络(Public Network)

由因特网信息中心分配的公有IP地址或者可以连接到外部互联网的IP地址。

私有网络(Private Network)

云主机连接和使用的内部网络。

L2NoVlanNetwork

物理主机的网络连接不采用Vlan设置。

L2VlanNetwork

物理主机节点的网络连接采用Vlan设置,Vlan需要在交换机端提前进行设置。

VXLAN网络池(VXLAN Network Pool)

VXLAN网络中的 Underlay 网络,一个 VXLAN 网络池可以创建多个 VXLAN Overlay 网络(即 VXLAN 网络),这些 Overlay 网络运行在同一组 Underlay 网络设施上。

VXLAN网络(VXLAN)

使用 VXLAN 协议封装的二层网络,单个 VXLAN 网络需从属于一个大的 VXLAN 网络池,不同 VXLAN 网络间相互二层隔离。

云路由 (vRouter)

云路由通过定制的Linux云主机来实现的多种网络服务。

安全组 (Security Group)

针对云主机进行第三层网络的防火墙控制,对IP地址、网络包类型或网络包流向等可以设置不同的安全规则。

弹性IP(EIP)

公有网络接入到私有网络的IP地址。

快照 (Snapshot)

某一时间点某一磁盘的数据状态文件。包括手动快照和自动快照两种类型。